## Topics in the June 2010 Exam Paper for CHEM1001

Click on the links for resources on each topic.

2010-J-2:

- Molecules and lons
- Stoichiometry

2010-J-3:

- Lewis Model of Bonding
- VSEPR

2010-J-4:

- The Periodic Table
- Atomic Energy Levels

2010-J-5:

• Stoichiometry

2010-J-6:

• Gas Laws

```
2010-J-7:
```

- Stoichiometry
- Gas Laws

2010-J-8:

• Chemical Equilibrium

2010-J-9:

- Thermochemistry
- First Law of Thermodynamics

2010-J-10:

- Chemical Equilibrium
- Equilibrium and Thermochemistry in Industrial Processes

2010-J-11:

- Electrochemistry
- Electrolytic Cells

```
2010-J-12:
```

- Electrochemistry
- Types of Intermolecular Forces

2010-J-13:

• Batteries and Corrosion

2201(a)

# THE UNIVERSITY OF SYDNEY <u>FUNDAMENTALS OF CHEMISTRY 1A - CHEM1001</u> FIRST SEMESTER EXAMINATION

# CONFIDENTIAL

### **JUNE 2010**

#### TIME ALLOWED: THREE HOURS

### GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

| FAMILY<br>NAME | SID<br>NUMBER   |  |
|----------------|-----------------|--|
| OTHER<br>NAMES | TABLE<br>NUMBER |  |

### **INSTRUCTIONS TO CANDIDATES**

- All questions are to be attempted. There are 22 pages of examinable material.
- Complete the written section of the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Only non-programmable, Universityapproved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Page 24 is for rough working only.

### **OFFICIAL USE ONLY**

|   | Multiple | e choice | section |   | /      |
|---|----------|----------|---------|---|--------|
|   |          |          | Marks   |   |        |
|   | Pages    | Max      | Gaine   | d |        |
|   | 2-11     | 34       |         |   |        |
|   | Short ar | nswer so | ection  |   |        |
| ĺ |          |          | Marks   |   |        |
|   | Page     | Max      | Gaine   | d | Marker |
|   | 12       | 4        |         |   |        |
|   | 13       | 9        |         |   |        |
|   | 14       | 7        |         |   |        |
|   | 15       | 4        |         |   |        |
|   | 16       | 4        |         |   |        |
|   | 17       | 8        |         |   |        |
|   | 18       | 3        |         |   |        |
|   | 19       | 6        |         |   |        |
|   | 20       | 6        |         |   |        |
|   | 21       | 5        |         |   |        |
|   | 22       | 6        |         |   |        |
|   | 23       | 4        |         |   |        |
|   | Total    | 66       |         |   |        |
|   | Check    | Total    |         |   |        |

Marks

2

• Complete the following table.

| Name                   | Formula           |
|------------------------|-------------------|
|                        | NH <sub>3</sub>   |
| phosphorus trichloride |                   |
|                        | KHCO <sub>3</sub> |
| calcium phosphate      |                   |

• Calculate the number of aluminium atoms in a block of pure aluminium that measures 2.0 cm × 2.0 cm × 3.0 cm. The density of aluminium is 2.7 g cm<sup>-3</sup>.

2

Answer:

| • Complete the following table.                                |                 |        |                 |  |
|----------------------------------------------------------------|-----------------|--------|-----------------|--|
| Molecule                                                       | NH <sub>3</sub> | $SF_4$ | CO <sub>2</sub> |  |
| Number of bonding electron pairs                               |                 |        |                 |  |
| Number of non-<br>bonding electron<br>pairs on central<br>atom |                 |        |                 |  |
| Lewis structure                                                |                 |        |                 |  |
| Molecular shape                                                |                 |        |                 |  |

• What is resonance? Illustrate your answer by using the nitrate ion, NO<sub>3</sub><sup>-</sup>, as an example.

3

| • The element titanium is used as a structu surgery. Discuss the properties of titaniu                                    | and material for bone in joint replacement um that make it suitable for this application.              | Marks<br>3 |
|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------|
|                                                                                                                           |                                                                                                        |            |
|                                                                                                                           |                                                                                                        |            |
|                                                                                                                           |                                                                                                        |            |
|                                                                                                                           |                                                                                                        |            |
|                                                                                                                           |                                                                                                        |            |
|                                                                                                                           |                                                                                                        | -          |
| • Gaseous lithium atoms absorb light with excited lithium atoms lose some energy the emission lines has an energy of 2.44 | a wavelength of 323 nm. The resulting through collisions with other atoms. One of $\times 10^{-19}$ J. | 4          |
| Calculate the energy of the light used for                                                                                | r the excitation.                                                                                      |            |
|                                                                                                                           |                                                                                                        |            |
|                                                                                                                           |                                                                                                        |            |
|                                                                                                                           |                                                                                                        |            |
|                                                                                                                           |                                                                                                        |            |
|                                                                                                                           |                                                                                                        |            |
|                                                                                                                           |                                                                                                        |            |
|                                                                                                                           | Answer:                                                                                                |            |
| Calculate the wavelength of the light em                                                                                  | litted.                                                                                                |            |
|                                                                                                                           |                                                                                                        |            |
|                                                                                                                           |                                                                                                        |            |
|                                                                                                                           |                                                                                                        |            |
|                                                                                                                           |                                                                                                        |            |
|                                                                                                                           |                                                                                                        |            |
|                                                                                                                           |                                                                                                        |            |
|                                                                                                                           | Answer:                                                                                                |            |

| · · · · · · · · ·                                                               |                                                                                     | Mar |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----|
| Lead ions react with bromide ions accor                                         | rding to the following equation.                                                    | 4   |
| $Pb^{2+}(aq) + 2Br^{-}(aq) \rightarrow PbBr_{2}(s)$                             |                                                                                     |     |
| If 0.040 M lead(II) nitrate solution (100 bromide solution (300.0 mL), what amo | 0.0 mL) is added to 0.020 M potassium<br>(in mol) of lead(II) bromide precipitates? |     |
|                                                                                 |                                                                                     | _   |
|                                                                                 |                                                                                     |     |
|                                                                                 |                                                                                     |     |
|                                                                                 |                                                                                     |     |
|                                                                                 |                                                                                     |     |
|                                                                                 |                                                                                     |     |
|                                                                                 |                                                                                     |     |
|                                                                                 |                                                                                     |     |
|                                                                                 |                                                                                     |     |
|                                                                                 |                                                                                     |     |
|                                                                                 |                                                                                     |     |
|                                                                                 |                                                                                     |     |
|                                                                                 | Answer:                                                                             |     |
|                                                                                 |                                                                                     |     |
| What is the final concentration of NO <sub>3</sub> <sup>-</sup> (               | (aq) ions remaining in solution after the                                           |     |
|                                                                                 |                                                                                     | _   |
|                                                                                 |                                                                                     |     |
|                                                                                 |                                                                                     |     |
|                                                                                 |                                                                                     |     |
|                                                                                 |                                                                                     |     |
|                                                                                 |                                                                                     |     |
|                                                                                 |                                                                                     |     |
|                                                                                 |                                                                                     |     |
|                                                                                 |                                                                                     |     |
|                                                                                 |                                                                                     |     |
|                                                                                 |                                                                                     |     |
|                                                                                 |                                                                                     |     |
|                                                                                 |                                                                                     |     |
|                                                                                 |                                                                                     | -   |
|                                                                                 | Answer:                                                                             |     |

Respiration involves the oxidation of glucose to produce carbon dioxide, water and a genergy:

$$C_6H_{12}O_6(s) + O_2(g) \rightarrow CO_2(g) + H_2O(l)$$

Balance this equation.

What volume of CO<sub>2</sub>(g) is produced from the oxidation of 10.0 g of glucose under body conditions (37 °C,  $1.00 \times 10^5$  Pa)?

Answer:

Marks • An unknown liquid contains H: 5.90 % and O: 94.1 % by mass and has a molar mass 2 of 33.9 g mol<sup>-1</sup>. What is its molecular formula? Answer: • A 2.4 g sample of zinc was dropped into 0.250 L of 5.0 M HCl in a 5.00 L container 6 at 25 °C with an initial pressure of 1.0 atm and then the vessel sealed. Calculate the final pressure inside the container. Hint: The volume occupied by the HCl is significant. Answer:

 $K_{\rm c} = 885$  at 500 °C

• Consider the following equilibrium reaction.

 $4\text{HCl}(g) + O_2(g) \iff 2\text{H}_2\text{O}(g) + 2\text{Cl}_2(g)$ 

If 0.030 mol HCl, 0.020 mol O<sub>2</sub>, 0.090 mol H<sub>2</sub>O and 0.085 mol Cl<sub>2</sub> are mixed in a 1.0 L container at 500 °C, in what direction will the reaction proceed?

Answer:

What is the value of  $K_p$  for the reaction at 500 °C?

Answer:

-394

Answer:

-286

 $\Delta_{\rm f} H^{\circ} / \text{kJ mol}^{-1}$ 

-105

Marks • Ammonia can be produced according to the following equation. 6  $\Delta H^{\circ} = -92.4 \text{ kJ mol}^{-1}$  $N_2(g) + 3H_2(g) \implies 2NH_3(g)$  $K_c = 1.5 \times 10^{-5}$  at 500 K. What is the concentration of ammonia at equilibrium if 0.5 mol of N<sub>2</sub>(g) and 1.5 mol of H<sub>2</sub>(g) are placed in an empty 2.0 L flask and allowed to come to equilibrium at 500 K? Answer: An additional 0.5 mol of nitrogen is added to the flask described above and equilibrium re-established. Will the equilibrium constant have increased, decreased or remained the same? Justify your answer. What now is the equilibrium concentration of ammonia? Answer:

| • Write the two half equations and hence balance the equation for the following redox reaction: |                                                        |   |  |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------|---|--|
| $MnO_2 + NaCl + H_2SO_4 \rightarrow$                                                            | $MnSO_4 + H_2O + Cl_2 + Na_2SO_4$                      |   |  |
| Working                                                                                         |                                                        |   |  |
|                                                                                                 |                                                        |   |  |
|                                                                                                 |                                                        |   |  |
| Palanced equation:                                                                              |                                                        | - |  |
| Balanced equation.                                                                              |                                                        |   |  |
| Which species is ovidised?                                                                      |                                                        | - |  |
|                                                                                                 | 2                                                      | _ |  |
| • In the electro-refining of Pt, what mass of 1.00 hour, by a current of 1.62 A?                | of Pt is deposited from a solution of $PtCl_6^{2-}$ in | 2 |  |
|                                                                                                 |                                                        |   |  |
|                                                                                                 |                                                        |   |  |
|                                                                                                 |                                                        |   |  |
|                                                                                                 |                                                        |   |  |
|                                                                                                 |                                                        |   |  |
|                                                                                                 |                                                        |   |  |
|                                                                                                 |                                                        |   |  |
|                                                                                                 |                                                        | 4 |  |
|                                                                                                 | Answer:                                                |   |  |



| liquid     | F <sub>2</sub> | HC1 | HBr | Cl <sub>2</sub> | HF | Br <sub>2</sub> |
|------------|----------------|-----|-----|-----------------|----|-----------------|
| b.p. (° C) | -188           | -85 | -67 | -34             | 20 | 59              |

| • The aluminium-air battery, in which alumining reduced to OH <sup>-</sup> , is being considered as a power elative merits of such a battery with those of | um metal is oxidised to $Al^{3+}$ and $O_2$ is ver source in cars. Briefly compare the f a fuel cell for such applications. | Marks<br>4 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------|
|                                                                                                                                                            |                                                                                                                             |            |
|                                                                                                                                                            |                                                                                                                             |            |
|                                                                                                                                                            |                                                                                                                             |            |
|                                                                                                                                                            |                                                                                                                             |            |
|                                                                                                                                                            |                                                                                                                             |            |
|                                                                                                                                                            |                                                                                                                             |            |
|                                                                                                                                                            |                                                                                                                             |            |

#### CHEM1001 – FUNDAMENTALS OF CHEMISTRY 1A

## **DATA SHEET**

Physical constants Avogadro constant,  $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant,  $F = 96485 \text{ C mol}^{-1}$ Planck constant,  $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum,  $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Rydberg constant,  $E_R = 2.18 \times 10^{-18} \text{ J}$ Boltzmann constant,  $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Permittivity of a vacuum,  $\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ J}^{-1} \text{ m}^{-1}$ Gas constant,  $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$   $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$ Charge of electron,  $e = 1.602 \times 10^{-19} \text{ C}$ Mass of electron,  $m_p = 1.6726 \times 10^{-27} \text{ kg}$ Mass of neutron,  $m_n = 1.6749 \times 10^{-27} \text{ kg}$ 

## Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm<sup>-3</sup>

#### Conversion factors

| 1 atm = 760 mmHg = 101.3 kPa                     | $1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$ |
|--------------------------------------------------|-------------------------------------------------|
| 0 °C = 273 K                                     | $1 \text{ Hz} = 1 \text{ s}^{-1}$               |
| $1 L = 10^{-3} m^3$                              | 1 tonne = $10^3$ kg                             |
| $1 \text{ Å} = 10^{-10} \text{ m}$               | $1 \text{ W} = 1 \text{ J s}^{-1}$              |
| $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$ |                                                 |

| Decimal fractions |        |        | Dec             | Decimal multiples |        |  |
|-------------------|--------|--------|-----------------|-------------------|--------|--|
| Fraction          | Prefix | Symbol | Multiple        | Prefix            | Symbol |  |
| $10^{-3}$         | milli  | m      | $10^{3}$        | kilo              | k      |  |
| $10^{-6}$         | micro  | μ      | $10^{6}$        | mega              | М      |  |
| $10^{-9}$         | nano   | n      | 10 <sup>9</sup> | giga              | G      |  |
| $10^{-12}$        | pico   | р      |                 |                   |        |  |

# CHEM1001 – FUNDAMENTALS OF CHEMISTRY 1A

| Standard Reduction Potentials, E°                                                                          |                   |
|------------------------------------------------------------------------------------------------------------|-------------------|
| Reaction                                                                                                   | $E^{\circ}$ / V   |
| $\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$                 | +1.82             |
| $\operatorname{Ce}^{4+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Ce}^{3+}(\operatorname{aq})$  | +1.72             |
| $MnO_4^{-}(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$                                          | +1.51             |
| $\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$                      | +1.50             |
| $Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$                                                                        | +1.36             |
| $O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$                                                                  | +1.23             |
| $Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$                                                                   | +1.18             |
| $MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$                                                    | +0.96             |
| $NO_3^-(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$                                                   | +0.96             |
| $Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$                                                                   | +0.92             |
| $Ag^+(aq) + e^- \rightarrow Ag(s)$                                                                         | +0.80             |
| $Fe^{3+}(aq) + e^- \rightarrow Fe^{2+}(aq)$                                                                | +0.77             |
| $\mathrm{Cu}^+(\mathrm{aq}) + \mathrm{e}^- \rightarrow \mathrm{Cu}(\mathrm{s})$                            | +0.53             |
| $\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cu}(s)$                      | +0.34             |
| $\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$ | +0.15             |
| $2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$                    | 0 (by definition) |
| $Fe^{3+}(aq) + 3e^- \rightarrow Fe(s)$                                                                     | -0.04             |
| $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$                                                                   | -0.13             |
| $\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$                      | -0.14             |
| $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$                                                                   | -0.24             |
| $\mathrm{Cd}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Cd}(\mathrm{s})$                      | -0.40             |
| $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$                                                                   | -0.44             |
| $\operatorname{Cr}^{3^+}(\operatorname{aq}) + 3e^- \rightarrow \operatorname{Cr}(s)$                       | -0.74             |
| $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$                                                                   | -0.76             |
| $2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$                                                              | -0.83             |
| $\operatorname{Cr}^{2^+}(\operatorname{aq}) + 2e^- \to \operatorname{Cr}(s)$                               | -0.89             |
| $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$                                                                   | -1.68             |
| $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$                                                                   | -2.36             |
| $Na^+(aq) + e^- \rightarrow Na(s)$                                                                         | -2.71             |
| $\operatorname{Ca}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Ca}(s)$                      | -2.87             |
| $\text{Li}^+(\text{aq}) + e^- \rightarrow \text{Li}(s)$                                                    | -3.04             |

# CHEM1001 – FUNDAMENTALS OF CHEMISTRY 1A

| Quantum Chemistry                                                            | Electrochemistry                                                                   |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| $E = hv = hc/\lambda$                                                        | $\Delta G^{\circ} = -nFE^{\circ}$                                                  |  |  |  |  |  |  |  |
| $\lambda = h/mv$                                                             | Moles of $e^- = It/F$                                                              |  |  |  |  |  |  |  |
| $E = -Z^2 E_{\rm R}(1/n^2)$                                                  | $E = E^{\circ} - (RT/nF) \times 2.303 \log Q$                                      |  |  |  |  |  |  |  |
| $\Delta x \cdot \Delta(mv) \ge h/4\pi$                                       | $= E^{\circ} - (RT/nF) \times \ln Q$                                               |  |  |  |  |  |  |  |
| $q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$                         | $E^{\circ} = (RT/nF) \times 2.303 \log K$                                          |  |  |  |  |  |  |  |
| $T \lambda = 2.898 \times 10^6 \text{ K nm}$                                 | $= (RT/nF) \times \ln K$                                                           |  |  |  |  |  |  |  |
|                                                                              | $E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$                       |  |  |  |  |  |  |  |
| Acids and Bases                                                              | Gas Laws                                                                           |  |  |  |  |  |  |  |
| $pK_{w} = pH + pOH = 14.00$                                                  | PV = nRT                                                                           |  |  |  |  |  |  |  |
| $pK_w = pK_a + pK_b = 14.00$                                                 | $(P+n^2a/V^2)(V-nb) = nRT$                                                         |  |  |  |  |  |  |  |
| $pH = pK_a + \log\{[A^-] / [HA]\}$                                           | $E_{\rm k} = \frac{1}{2}mv^2$                                                      |  |  |  |  |  |  |  |
| Radioactivity                                                                | Kinetics                                                                           |  |  |  |  |  |  |  |
| $t_{1/2} = \ln 2/\lambda$                                                    | $t_{1/2} = \ln 2/k$                                                                |  |  |  |  |  |  |  |
| $A = \lambda N$                                                              | $k = A e^{-Ea/RT}$                                                                 |  |  |  |  |  |  |  |
| $\ln(N_0/N_t) = \lambda t$                                                   | $\ln[\mathbf{A}] = \ln[\mathbf{A}]_0 - kt$                                         |  |  |  |  |  |  |  |
| $^{14}$ C age = 8033 ln( $A_0/A_t$ ) years                                   | $\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left( \frac{1}{T_1} - \frac{1}{T_2} \right)$ |  |  |  |  |  |  |  |
| Colligative Properties & Solutions                                           | Thermodynamics & Equilibrium                                                       |  |  |  |  |  |  |  |
| $\Pi = cRT$                                                                  | $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$                         |  |  |  |  |  |  |  |
| $P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$ | $\Delta G = \Delta G^{\circ} + RT \ln Q$                                           |  |  |  |  |  |  |  |
| c = kp                                                                       | $\Delta G^{\circ} = -RT \ln K$                                                     |  |  |  |  |  |  |  |
| $\Delta T_{\rm f} = K_{\rm f} m$                                             | $\Delta_{\rm univ}S^\circ = R\ln K$                                                |  |  |  |  |  |  |  |
| $\Delta T_{\rm b} = K_{\rm b} m$                                             | $K_{\rm p} = K_{\rm c} \left( RT \right)^{\Delta n}$                               |  |  |  |  |  |  |  |
| Miscellaneous                                                                | Mathematics                                                                        |  |  |  |  |  |  |  |
| $A = -\log \frac{I}{I_0}$                                                    | If $ax^2 + bx + c = 0$ , then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$             |  |  |  |  |  |  |  |
| $A = \varepsilon c l$                                                        | $\ln x = 2.303 \log x$                                                             |  |  |  |  |  |  |  |
| $F = -A - \frac{e^2}{N}$                                                     | Area of circle = $\pi r^2$                                                         |  |  |  |  |  |  |  |
| $L 4\pi\varepsilon_0 r^{1_{\rm YA}}$                                         | Surface area of sphere = $4\pi r^2$                                                |  |  |  |  |  |  |  |

### Useful formulas

| 1                                  | 2                  | 3                  | 4                    | 5                 | 6                  | 7                     | 8              | 9                 | 10                    | 11                 | 12               | 13                 | 14                 | 15                | 16                 | 17                  | 18                               |
|------------------------------------|--------------------|--------------------|----------------------|-------------------|--------------------|-----------------------|----------------|-------------------|-----------------------|--------------------|------------------|--------------------|--------------------|-------------------|--------------------|---------------------|----------------------------------|
| 1<br>нудгоден<br><b>Н</b><br>1.008 |                    |                    |                      |                   |                    |                       |                |                   |                       |                    |                  |                    |                    |                   |                    |                     | 2<br>нешим<br><b>Не</b><br>4.003 |
| 3                                  | 4                  |                    |                      |                   |                    |                       |                |                   |                       |                    |                  | 5                  | 6                  | 7                 | 8                  | 9                   | 10                               |
| LITHIUM<br><b>I</b> .i             | BERYLLIUM          |                    |                      |                   |                    |                       |                |                   |                       |                    |                  | BORON              | CARBON             | NITROGEN          | OXYGEN             | FLUORINE            | NEON<br>Ne                       |
| 6.941                              | 9.012              |                    |                      |                   |                    |                       |                |                   |                       |                    |                  | 10.81              | 12.01              | 14.01             | 16.00              | 19.00               | 20.18                            |
| 11                                 | 12                 |                    |                      |                   |                    |                       |                |                   |                       |                    |                  | 13                 | 14                 | 15                | 16                 | 17                  | 18                               |
| SODIUM                             | MAGNESIUM          |                    |                      |                   |                    |                       |                |                   |                       |                    |                  | ALUMINIUM          | SILICON            | PHOSPHORUS<br>D   | SULFUR             |                     | ARGON                            |
| 22.99                              | 24 31              |                    |                      |                   |                    |                       |                |                   |                       |                    |                  | 26.98              | 28.09              | <b>1</b><br>30.97 | 32.07              | 35.45               | AI<br>39.95                      |
| 19                                 | 20                 | 21                 | 22                   | 23                | 24                 | 25                    | 26             | 27                | 28                    | 29                 | 30               | 31                 | 32                 | 33                | 34                 | 35                  | 36                               |
| POTASSIUM                          | CALCIUM            | SCANDIUM           | TITANIUM             | VANADIUM          | CHROMIUM           | MANGANESE             | IRON           | COBALT            | NICKEL                | COPPER             | ZINC             | GALLIUM            | GERMANIUM          | ARSENIC           | SELENIUM           | BROMINE             | KRYPTON                          |
| <b>K</b><br>39.10                  | <b>Ca</b><br>40.08 | <b>SC</b><br>44 96 | 47.88                | <b>V</b><br>50.94 | 52 00              | 1 <b>VIN</b><br>54 94 | ге<br>55.85    | CO<br>58 93       | INI<br>58.69          | <b>Cu</b><br>63 55 | <b>2n</b>        | <b>Ga</b><br>69 72 | <b>Ge</b><br>72 59 | AS<br>74 92       | <b>Se</b><br>78.96 | Br<br>79 90         | <b>Kr</b><br>83 80               |
| 37                                 | 38                 | 39                 | 40                   | 41                | 42                 | 43                    | 44             | 45                | 46                    | 47                 | 48               | 49                 | 50                 | 51                | 52                 | 53                  | 54                               |
| RUBIDIUM                           | STRONTIUM          | YTTRIUM            | ZIRCONIUM            | NIOBIUM           | MOLYBDENUM         | TECHNETIUM            | RUTHENIUM      | RHODIUM           | PALLADIUM             | SILVER             | CADMIUN          |                    | TIN                | ANTIMONY          | TELLURIUM          | IODINE              | XENON                            |
| <b>Rb</b>                          | Sr<br>°7.62        | <b>Y</b>           | <b>Zr</b>            | Nb<br>02.01       | <b>Mo</b>          | TC                    | <b>Ru</b>      | <b>Rh</b>         | <b>Pd</b>             | Ag                 | <b>Cd</b>        | $\ln$              | <b>Sn</b>          | <b>Sb</b>         | <b>Te</b>          | <b>I</b>            | <b>Xe</b>                        |
| 55                                 | 56                 | 57 71              | 72                   | 72                | 93.94<br>74        | [96.91]<br>75         | 76             | 77                | 78                    | 70                 | 80               | <u> </u>           | 82                 | <u>121.73</u>     | 127.00<br>QA       | 120.90<br><b>85</b> | 86                               |
| CAESIUM                            | BARIUM             | 57-71              | I Z<br>HAFNIUM       | TANTALUM          | TUNGSTEN           | 7 J<br>RHENIUM        | OSMIUM         | IRIDIUM           | 7 O<br>PLATINUM       | GOLD               | MERCUR           | THALLIUM           |                    | BISMUTH           | POLONIUM           | ASTATINE            | RADON                            |
| Cs                                 | Ba                 |                    | Hf                   | Ta                | W                  | Re                    | Os             | Ir                | Pt                    | Au                 | Hg               | Tl                 | Pb                 | Bi                | Po                 | At                  | Rn                               |
| 132.91                             | 137.34             | 00 102             | 178.49               | 180.95            | 183.85             | 186.2                 | 190.2          | 192.22            | 195.09                | 196.97             | 200.5            | 204.37             | 207.2              | 208.98            | [210.0]            | [210.0]             | [222.0]                          |
| ð /<br>Francium                    | 88<br>RADIUM       | 89-103             | 104<br>RUTHERFORDIUM | 1U5<br>i dubnium  | 100<br>SEABORGIUM  | IU/<br>BOHRIUM        | 108<br>hassium | 109<br>meitnerium | 1 1 U<br>darmstadtium | III<br>ROENTGENIUM | IIZ<br>COPERNICI | л                  |                    |                   |                    |                     |                                  |
| Fr                                 | Ra                 |                    | Rf                   | Db                | Sg                 | Bh                    | Hs             | Mt                | Ds                    | Rg                 | Cn               |                    |                    |                   |                    |                     |                                  |
| [223.0]                            | [226.0]            |                    | [261]                | [262]             | [266]              | [262]                 | [265]          | [266]             | [271]                 | [272]              | [283]            |                    |                    |                   |                    |                     |                                  |
|                                    |                    | _                  |                      |                   |                    |                       |                | 1                 | - I -                 | . [                |                  |                    | [                  |                   |                    |                     |                                  |
|                                    | 5                  | 7                  | 58                   | 59<br>RASEODVMUM  | 60                 | 61<br>PROMETHIUM      | 62             | 63                | 64<br>GADOLI          |                    | 65<br>RRIUM      | 66<br>DVSPROSIUM   | 67                 | 68                | 69                 | 70                  | 71                               |
| LANIHANO                           | L                  | a                  | Ce                   | Pr                | Nd                 | Pm                    | Sm             | Eu                | G                     | d 7                | Гb               | Dy                 | Но                 | Er                | Tm                 | Yb                  | Lu                               |
|                                    | 138                | .91 14             | 40.12                | 140.91            | 144.24             | [144.9]               | 150.4          | 151.9             | 6 157.                | 25 15              | 8.93             | 162.50             | 164.93             | 167.26            | 168.93             | 173.04              | 174.97                           |
|                                    | 8                  | 9                  | 90                   | 91                | 92                 | 93                    | 94             | 95                | 96                    | 5                  | 97               | 98                 | 99                 | 100               | 101                | 102                 | 103                              |
| ACTINOII                           | DS ACTI            |                    | Th                   | Pa<br>Pa          | URANIUM<br>URANIUM | NEPTUNIUM<br>Nn       |                | AMERICIU<br>Am    |                       | n l                | Bk               | Cf                 | EINSTEINIUM        | FERMIUM           | MENDELEVIUM        | NOBELIUM            | LAWRENCIUM                       |
|                                    | [22                | 7.0] 23            | 32.04                | [231.0]           | 238.03             | [237.0]               | [239.1]        | [243.1            | [] [247               | .1] [24            | 47.1]            | [252.1]            | [252.1]            | [257.1]           | [256.1]            | [259.1]             | [260.1]                          |

# PERIODIC TABLE OF THE ELEMENTS

2201(b)